
AAS 00-271 

ADAPTIVE INTERPLANETARY NAVIGATION USING GENETIC 
ALGORITHMS 

Todd A. E l i ,  Robert H. Bishopt,  and  Timothy P. Grain* 
The  problem o f  tuning trajectory  determination  models for interplanetary 
navigation  is a complex  task  requiring  an  intensive  search of multiple  dynamical 
and  nondynamical  models  that  yield  trajectory  solutions with minimal  errors.  The 
process  that  operational  teams  currently  utilize is based as much  on  previous 
experience, as it is on a scientific  understanding of these  underlying  models. 
This study illustrates  an  automated  approach for filter tuning (via  model 
optimization) using a genetic  algorithm (GA) coupled with an  extended  Kalman 
filter (EKF). In particular,  the  solar  radiation  pressure  (SRP)  model o f  the  Mars 
Pathfinder (MPF) spacecraft  is  investigated  using a 3 month span of tracking 
data during the  cruise  phase of the  mission.  The  results  obtained in this study 
are  compared to the  best  model  obtained by the MPF  navigation  team.  Unlike 
many  previous  adaptive  filtering  schemes,  the GA based  approach  does not 
require  gradient  information  about  neighboring  model options, hence it is capable 
of examining  filter  models of varying  structure.  The GA operates on a population 
of individuals  that  are  selected  (initially  at  random) from the  design  space. In this 
study,  the  selected  design  space  includes 1.44E+17 distinct SRP  models.  Each 
individual  processes  the  tracking  data set using the  EKF.  The  basis for the GAS 
fitness function is a normalized  sample  statistic o f  the output residual  sequence. 
Using the  fitness  values  computed for each  individual,  the GA selects  the  parent 
population  via a tournament  method.  For  crossover,  several  strategies  are 
investigated to determine  the  best  method  for  quick  convergence of the GA to a 
near  optimal  solution.  The  results show that  the GA is able to determine  an SRP 
model with a fitness  value  that is - 6% better  than  the  model  selected by the 
MPF  navigation  team,  and  produces  predicted  residuals  that  are  more  stable. 

INTRODUCTION 
The  problem of tuning  trajectory  determination  models  for  interplanetary  navigation  is  a  complex task 

requiring an intensive  search of multiple  dynamical  and  nondynamical  models  that  yield  trajectory 
solutions  with  minimal  errors.  The  process  that  operational  teams  currently  utilize is based as much on 
previous  experience, as it is on a  scientific  understanding of these  underlying  models.  Furthermore,  there  is 
an  ever-increasing  demand  for  navigation  analysts  to  support  multiple  spacecraft  missions  (each  with 
unique  modeling  issues)  using  tools  that  have  inherent  limitations  because  of the generic  models  utilized by 
these  tools. As an  example,  the  Mars  Pathfinder  (MPF)  spacecraft  that  successfully  landed  on  Mars  in  July 
1997  had  a  backshell  shroud  that  protected  the  lander  during  cruise  and  Mars  entry.  It  was  conical  in  shape 
and,  during  the  cruise  phase,  often  shadowed  from  the Sun by the  spacecraft  solar  arrays.  However,  the 
component  models  available  for  use  by  the  MPF  analysts  for  solar  radiation  pressure  modeling  consisted of 
only  flat  plates  and  cylinders.  Neither was entirely  correct,  thus  they  were  forced  to  approximate  the  model 
of the  backshell  using  one of these  choices  with  an unknown scale  factor  (because of shadowing) [ 11. Their 
approach was iterative  requiring  the  team  to  select  a  model,  adjust  the  filter  realization,  process the 
observations,  and  then  compare  results  to  previous  filter  realizations.  Clearly,  this  tuning  process  could 
have  benefited  from  a  systematic  and  automated  methodology  for  finding  a  best  filter  model.  Doing so 
would  have  eased  operation  team  workloads  and  have  allowed  them  to  consider  a  wider  range  of  possible 
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solutions.  This  study  presents  a  method  for  adaptation of navigation  models  using  genetic  algorithms  to 
search  a  selected  design  space,  and  arrive  at  a  model  that  best  fits  the  measured  spacecraft  tracking  data. 

Popular  approaches  to  model  adaptation  often  utilize  parallel  filter banks, each  operating  with  different 
internal  model  realizations.  The  Magill  filter bank is  a  classic  method  utilizing  a  Bayesian  method to 
assign  probabilities  to  each  member of the bank, with the  aggregate of the bank  forming  an  ’optimal’  output. 
Unfortunately, this method,  along  with  others,  suffers  fiom  the  fact  that  only  a  small  portion  of  a  potential 
modeling  space  can  be  considered  in  any  given  realization  of  a  filter bank. Additionally,  the  Magill  filter 
experiences  numerical  underflow  problems  for  long spans of data [2], [3]. Early  attempts  to  utilize  Magill 
filter  banks  for  interplanetary  orbit  determination  were  reported  by  Burkhart  and  Bishop [4]. Another 
classical  technique  accommodates  modeling  errors by matching  process  noise  and  measurement  noise 
statistics  to  the  received  data [5]. A  recent  application of this approach  by  Powell [6] successfully  utilizes  a 
simplex  method,  and  thus  does  not  require  gradient  information  about  the  filter’s  dynamic  and/or 
measurement  models.  Noise  matching  methods  maintain  tracking  stability  of the filter,  however  they  do 
not  address  the  fundamental  issue of adjusting  internal  modeling  assumptions  that  may  have  become 
suboptimal.  Many  other  model  optimization  techniques  exist,  such as the  recursive  quadratic  programming 
(RQP)  approach  investigated by Chaer,  Bishop,  and  Ghosh [3],[7], however  they are typically  based  on  the 
existence of gradient  information.  These  do  not  exist when considering  model  changes  between  discrete 
options  (i.e.,  such as changing  a  flat  plate  to  a  cylinder).  Adaptation  using  genetic  algorithms  (GA) is 
ideally  suited  for  situations where the  design  space is complex  and  consists of  mixed  variable  (discrete  and 
continuous)  because  gradient  information is not  required.  However,  currently,  they are not  well  suited for 
real  time  processing  because  their  convergence is evolutionary  in  nature.  Nevertheless,  interplanetary 
navigation  (especially  during  cruise) is typically  a  process  that  operates on spans of data  that  are  days to 
weeks  in  length,  and  the  filter  tuning  process  (via  analysis  by  a  navigation  team)  can  take  days  to  weeks, as 
well.  Thus, use of a  genetic  algorithm  to  assist  in this process is warranted.  Previously,  Chaer,  Bishop, 
and  Ghosh [3],  [7], and  Chaer  and  Bishop [8] employed  GAS  for  adaptive  orbit  determination  during 
interplanetary  cruise,  however,  their  efforts  focused on adjusting  internal  parameters  (e.g.  measurement  and 
process  noise)  within  individual  filters of  fixed structure. Using  gating  networks  to  regulate  the  filter bank, 
the GA  operated  in  an  outer  loop  with  the  performance  of the indivdiual  filters  represented  by the gating 
network  weights. In this  new  application,  the  GA is used to adapt  the  individual  filter  structure by 
effectively  updating  the  spacecraft  model  itself.  The  filter bank is utilized as the GA population. This is a 
significantly  different  application of the GA  from  previously  reported  investigations. Also, for  the  first 
time,  actual  Deep  Space  Network  (DSN)  tracking data is used  in the  investigations,  whereas  previous 
studies  relied on simulated DSN tracking  data. 

The  current  study  employs  a  GA  coupled  with  an  extended Kalman filter ( E m  for  model 
optimization. In particular,  the  solar  radiation  pressure (SRP) model of the Mars  Pathfinder  spacecraft  is 
investigated  using  a 3 month  span  of  tracking  data  during the  cruise  phase of the  mission.  The  results 
obtained  in  this  study  are  compared to the  best  model  obtained  by  the  MPF  navigation  team.  During 
operations  the  issue of appropriate  spacecraft  component  models  was of a  central  concern.  Shadowing of 
the  backshell,  coupled  with  a  limited  component  selection  complicated  the  team’s  search  for  an  appropriate 
model.  Given  this  experience,  the  design  space  selected  for  the GA search  includes  component  selection of 
the  backshell  between  either  cylinders or flat  plates.  The  size  and  orientation of these  components is 
selectable.  The  GA  design  space  also  includes  as  selectable  parameters  the  apriori  covariances  for  the SRP 
component  area  scale  factors.  The  GA  operates  on  a  population of individuals  that  are  selected  (initially  at 
random) &om this design  space.  Each  individual  processes the tracking data set  via  the EKF. The  basis  for 
the GA’s  fitness  function is a  normalized  sample  statistic of the output  innovation  sequence  for  each 
individual.  Using  the  fitness  values  computed  for  each  individual,  the GA selects  the  parent  population  via 
a  tournament  method.  For  crossover,  several  strategies  are  investigated to determine  the  best  method  for 
quick  convergence of the GA to  a near optimal  solution.  The  selected  design  space  includes 1.44E+17 
distinct SRP models,  and  the  results  show  that  the  GA is able  to  determine  an SRP model  with a  fitness 
value  that  is - 6% better  than  the  model  selected  by the MPF  navigation  team,  and  produces  predicted 
residuals  that  are  more  stable. 
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Figure 2: Mars  Pathfinder  spacecraft  in  cruise  configuration [ 11. 

MARS PATHFINDER  NAVIGATION 
The  Mars  Pathfinder  spacecraft  successfully  landed  on  Mars on July 4, 1997  after  launching 7 months 

earlier on December 4, 1996.  The  spacecraft  trajectory  was  a  Type  1  transfer  from  Earth  to  Mars  and is 
shown  in  Figure  1.  The  passage  of time is indicated on the  trajectory  via  time  ticks  at  15  day  intervals. 
The  cruise  phase  trajectory  correction  maneuvers  (TCMs) are indicated as well. Of particular  interest  in 
this  study is modeling  of the spacecraft  dynamics  during  the  cruise  phase  between TCM 2 on February 3, 
1997  and  TCM 3 on  May  7,  1997, a span of 91 days. This span of data was selected  for  analysis  because 
modeling  issues  regarding  radiometric data quality,  a  significant  effect  during  other  data spans, was  not a 
factor  during  this  period.  The  configuration of the MPF  spacecraft  during  cruise is shown  in  Figure 2. The 
MPF  lander  and its science  payload  were  enclosed  in  an  atmospheric  deceleration  module  (backshell  and 
heatshield)  that  was  attached  to  a  cruise  stage.  The  cruise  stage,  mounted  at  the  apex  of  the  backshell, 
consists of a  circular  solar  array  panel,  propellant  and  attitude  control  system  hardware. 
Telecommunications  and  navigation  tracking  were  performed  using  an  X-band  radio  system  and  medium 
gain  antenna,  also  on  the  cruise  stage.  Two way, coherent  Doppler  and  ranging  were  the  primary 
navigation data types  utilized  for  trajectory  determination. 

A significant  issue  that  the  navigation  team  dealt  with was the  selection of an appropriate  set of 
spacecraft  components  for  solar  radiation  pressure  modeling [ 11. The  software  used  to  process  the  tracking 
data had  modeling  capabilities  consisting of only  standard  shapes,  such as flat  plates  and  cylinders. 
However,  the  backshell’s  conical  shape  did  not  conform  well to this set.  Another  factor  adding  to  modeling 
difficulties was the  fact  that  the  backshell  was  partially  shadowed by the solar  array  during  most of the 
flight.  Figure 3 shows the Sun-spacecraft-Earth  angle y during  cruise.  The  spacecraft  body fixed axes 
points  the  Z-axis  outward  and  normal to the  solar  array.  Since  the  spacecraft  attitude  is  nominally  pointed 
with  the  fixed  Z-axis  towards Earth, as y becomes  smaller the Sun illuminates  more of the solar  array,  and 
the  shadow  cast by the  array  onto  the  backshell  becomes  larger.  Examination of Figure 3 reveals  that  the 
backshell  shadowing is a  minimum  at  the  start  of the mission.  It  then  increases  to  a  maximum  after - 70 
days (- 8 days into the  period  being  investigated  in  this  research),  and  then  decreases  after  that.  Over  the 
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Figure 3: Sun-spacecraft-Earth  angle y for  Mars  Pathfinder  cruise 

course of the mission  the  navigation  team  experimented  with  many  component  models  that  tried  to  account 
for  the  impact of these  geometric  considerations  sufficiently. 

The  process  that  the  MPF navigatim team  utilized  for  model  selection  centered  around  filtering  with 
all  available data, then  taking  a  solution  based  on  the  selected  model  and ’passing it  through’  the  next  few 
days of data. The  model  yielding  the  most  stable  pass  through  residuals  would  then  be  selected.  During 
this  time period the  MPF  navigation  team arrived at  a SRP model  with  components as indicated  in  Table 1. 
Of particular  note is the  change  in  the  backshell  model  from  a  cylinder  prior  to April 16, 1997, to  a  flat 
plate  after  that.  This  illustrates  a  significant  feature  with  the  time  dependent  nature of SRP modeling 
resulting  from  the  changing  shadowing  environment.  It  should be noted  that  later in the  mission  the  team 
had  to  change  the  backshell  model  to be just a  flat  plate  for the entire  cruise  because the solution  using  the 
model in Table 1 became  extremely  sensitive to the  inclusion of a  specific  pass of data collected  a week 
prior to Mars  atmosphere  entry. 

Table 1: MPF  navigation  team  optimal SRP model  between  TCM2  and  TCM3 
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GENETIC  ALGORITHMS AND ADAPTIVE  NAVIGATION 
The  experience of the MPF  navigation  team  in  frnding  an  adequate SRP model  illustrates  the 

complexity of the  navigation  model  design  space  and  the ad hoc  nature  currently  utilized to obtain  an 
adequate  model. It should be emphasized  that  the  nature of the team’s  design  decisions  focused not only  on 
filter  parameter  selection  and  their  associated  values,  but also on selecting  the  underlying  dynamic  models 
(a  structural  change to the filter).  Past  approaches  to  adaptive  filtering  have  typically  focused on filter 
tuning  by  considering  only  modifications  to  model  parameters  values andor a priori uncertainties. 
Structural  changes  to  filters  via  modifications  to  underlying  dynamic  models,  measurement  models, and/or 
filter  state  vector  components  have been outside of the scope  of  most  adaptive  techniques. This is  partially 
attributable  to  the  fact  that  many  design  optimization  methods  are  gradient  based,  and,  thus,  do  not  support 
discrete  structural  changes. An exception to this is the  Magill  filter bank, however, as noted  previously, 
this  method  suffers  from  numerical  underflow  problems  and  a  practical  implementation of a  bank is limited 
to  a  small  set of all possible  discrete  filters. A genetic  algorithm  does  not  require  gradient  information  nor 
is it  limited by a  small  sample  of the desired  design  space,  hence it is a  natural  choice as a  model 
optimization  method. 

A genetic  algorithm is a  computational  representation of natural  selection  that  bases its search  and 
optimization on the  analogy  that an individual  that is more fit to its environment  is  closer to an optimal 
design. In applying this analogy  to  the  adaptive  navigation  problem an individual represents  a  specific 
filter  realization of dynamic  models,  measurement  models,  state  vector  components,  a priori uncertainty 
values,  and  associated  noise  process  models.  The  particular  variables  and  their  associated  range  of  values 
that  have  been  isolated  for  analysis  represent  the  design  space. An example  design  space  relevant to this 
study is spacecraft  component  selection  for  modeling  the  backshell.  Each  individual  design  has  its  variable 
values  encoded  into  a  representation,  typically  a  binary string, that  corresponds  to  its chromosome. The 
GA examines  a population of individuals  by  analyzing  thefirness of  each  individual,  a  metric  that  measures 
a  selected  figure of merit. In the case of adaptive  navigation,  the  fitness  value is based  on  the  sample 
statistics of the  residual  sequence.  With this information,  the GA iterates on the  members of the population 
from  one generation to  the  next with the  aim of improving  the  overall  fitness of the population,  where 
improvement is defined  in this problem as minimizing the  fitness  value.  The GA accomplishes this 
objective  using three primary  operators, 

1. Selecting the  more  fit  individuals of the population  to  become parents, 

2. Mating  the  parents  via  a crossover operation  that  exchanges  chromosome  information  to  produce 
children, 

3. Modifying  the  children’s  chromosomes  via  a  low  probability of mutation to  ensure  diversity of the 
population. 

The  children of the current  generation  then  become the population  for  the  next  generation,  and  the  process 
iterates  until  convergence or it is stopped.  Furthermore  to  ensure  the GA starts with a  diverse  image of the 
potential  design  space  the  initial  population is seeded  with a  random  set  of  individuals. This combination 
of deterministic  rules  for  selection  and  combination  coupled with  probabilistic  sampling  creates  a  robust 
approach  for  arriving  at  the  global  minimum.  Furthermore,  the  probabilistic  elements of the GA help  to 
prevent  convergence  towards  local  extrema. 

THE ADAPTIVE  NAVIGATION FITNESS FUNCTION 
A general  method  for  analyzing  the  fidelity of a  filter  that is processing  measurement  data  is  in  the 

quality of its post  fit  residual  sequence.  Regardless of the filtering  method (Le.,  batch least  squares, 
linearized or extended  Kalman  filter,  etc.),  a  properly  operating  filter  should  produce  a  post fit residual 
sequence  that is a  zero  mean  white  noise  process [5]. For the  application  considered  in this study an 
Extended  Kalman (EKF) was  utilized  to  process the 2 Way  Doppler data  collected  by the Deep  Space 
Network  (DSN).  Using the  standard EKF algorithm,  the  residual  value r(-) at  time t i  is formulated  as, 
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r ( f i )  = Z ( t i )  - h ( i ( t f ) , t ; )  , (1) 

where z(.) is a  scalar  measurement  (in  the  present case a 2 Way  Doppler  value)  taken at  time t i ,  h(-,-) is 

the  nonlinear  measurement  model,  and i ( t f )  is  the  nonlinear  state  vector  estimate  propagated  from  the 

time of the prior  measurement tLl to  the  current  time t; (where  the ’-’ indicates  that  the  filter  update with 
the  current  measurement  has yet to  occur).  During  mission  operations,  the  measurement  data is taken in 
passes when the  satellite is in  view  of a DSN station.  The  time  interval  between  measurements is typically 
uniform  during  a  pass  (however data editing  can  eliminate  individual  points  within  the  pass),  but  the  length 
of a  pass  and  the  interval  between  passes is typically  not  uniform  because of changing  geometry  and 
operational  schedules.  The  covariance  associated  with  the  residual  in Eq. (1) takes  the  form, 

w(tj )  = H[t i , i ( t ; ) Ip ( t ; )HT[ t i , i ( t ; ) ]+62 ,  (2) 

where H[ti, i ( t ; ) ]  is the  linearized  measurement  matrix and is defined  as, 

the  predicted  state  covariance  matrix is P(t;), and 6; is the  associated  measurement  noise  variance 
(assumed  to be time  independent). A sequence of residual  values {r(ti), i = 1, ..., N }  that  results from 
operating  an EKF over  a  selected  span of data can be  used to  formulate  a  normalized  sample  statistic 4 that 
is a  measure of the filter’s  performance.  The  statistic is computed  using, 

It  can  be  easily  shown  that  the  value  that the  statistic  computed  using Eq. (4) is related  to  the sum of the 
residual  sequence’s  mean  value  squared  and its associated  variance,  that  is, 

where M represents  the  mean  and V is  the  variance.  Ideally an EKF operating  nominally as compared to an 
EKF with a  suboptimal  model  produces  a  residual  sequence  with  a  smaller  mean  value  and  variance.  Thus, 
from Eq. ( 9 ,  better  filter  models  yield  smaller  values  for 4 . Finding  a global optimal  model C for  the 
EKF can  now be posed  in  the  form  of a  design  objective  using  the  statistic  defined  above: 

Find @ E A I &,, = @(i) I @(a),Va E A},  (6) 

where a is the  vector of design  parameters  representing  an  individual  that is a member  of the selected 
design  space A.  Typically,  a GA’s fitness  function  for  single  objective  optimization  is  defined as the sum of 
an  objective  (in  this  case  the  statistic 4 ) and  an  imposed  penalty p ,  that is 
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Figure 4: Doppler  residual  sequence  using  the  MPF team’s  best SRP model ( fmF = 0.1470). 

where  the  penalty  function’s  definition is based  on any imposed  constraints.  Since  the  problem  that is being 
considered  in  this  study  does  not  have  any  constraints,  the  fitness  function  reduces  to f = @ , and  the 
design  problem  in Eq. (6) is equivalent to finding i that  minimizes  the  fitness$ 

In the  present  problem  the  individual  design  selected  by the MPF  team  listed  in  Table  1 is an  example 
that  yields  a  specific  value  for  the fitness$ The  data  sequence  consists  of  2017  2-Way  Doppler  values 
collected  between  the DSN  and the  MPF  spacecraft,  and spans 91 days past  February  4,  1997. This period 
lies  between TCM 2  and TCM 3 on  the  trajectory.  Figure  4  illustrates  the  residual  sequence  obtained cm 
this  data  span  using  the SRP model  of  Table 1. Details of other  filter  model  parameters can be found  in 
Ref. [ 11. Applying Eq. (4)  to  the  first  1612  points of the sequence  yields  a  fitness  value of fmF = 0.1470. 
It is this result  that  the GA  will try to improve  upon as it  searches  through  the  design  space. Also, note  that 
not  all  2017  data  points  were  used to  formulate  the  fitness. This is because  only  the  first  72.5 days of data 
(1612  points)  were  filtered  using  the Em. The EKF solution  at  the  end of this span is then  used to 
compute  predicted  measurements  from  days  74 to 9 1. These are differenced  with  the  observed  data 
collected  during  the  same  period  to  produce  the  predicted  residual  sequence  shown  in  Figure  4.  (Note  that 
the  pass of residuals on  day  74  appears  slightly  biased  due  to  the  presence  of  a  small  correction  maneuver 
that  took  place  during  the  middle  of  the pass.) A  stable  solution  should  produce  predictions  that  appear 
zero mean and  white.  It  is  clear  from  Figure  4  that this is  not  the  case,  there  exists  a  distinctive  divergence 
away  from  a  zero  mean.  Ideally,  the  optimized  model  obtained  by  the  GA  will  yield  residuals  that  have  not 
only  a  smaller  value for J but also  have  a  filter  solution  that  produces  more  stable  predicted  residuals, as 
well. 

THE MPF SOLAR RADIATION PRESSURE DESIGN SPACE 
Perhaps  the  most  crucial  part of  using a GA  for  model  optimization  is  the  selection  of  an  appropriate 

design  space  and  the  formulation of the parameter  vector a .  An immediate  practical  concern is selection 
of a  minimal  set  of  design  parameters  that  adequately  characterize  the  design  problem  under  investigation. 
The  number of design  parameters  and  the  associated  bit  level  resolution  necessarily  increase  the  length of 
an  individual  chromosome,  and  subsequently  increase  the  size  of the design  space.  For  example  a 
chromosome  length  of 57  bits  yields  a  design  space of  257 = 1.441~10’~ individual  designs.  The  required 
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Table 2: The SRP design  space  for  the  MPF  spacecraft  configuration  for  modeling  solar  radiation  pressure. 

fp parameter:  Active  Span  Area  Scale 
(FTi+d E Factor 

(Ti, Ti + 64 days) Sigma 
r E (.5 m1.4 m) Note: To = 4 Feb 97 oSF E (0,2) 1 

population  size  increases as the  chromosome  grows  longer,  and  the  number of generations  required  for 
convergence  increases as the  design  space  becomes  larger.  Hence,  given  the  evolutionary  nature of the 
GA, the  time  to  convergence can  be a  significant  practical  concern  for  long  chromosomes. In the  current 
problem  a  given  filter  realization  processing the given data set  on  an  Hewlett  Packard 360 workstation  took 
anywhere  from 2.5 - 4.1 minutes of dedicated  CPU  time,  the  result is a GA run that  can  take  many  days  to 
a week before  completing.  Hence, to minimize this time,  a  minimal  set  of  design  parameters is sought. 
Table 2 lists  the  design  parameters  selected  for  analysis,  the portion that is highlighted  in  gray  represent  the 
specific  variables  to be  encoded into  a  binary  string to form the  chromosomes.  The areas not  highlighted 
are  parameters  that  remain  fixed  for  each  individual (in addition  to  other  filter  parameters  not  listed). 
Associated  with  each  design  variable is the  range of  values  that it can take  and  the  number of bits  (genes) 
that are used  to  encode  it  into  a  binary  string.  Using  the  combination of the range (a,,,am,) and  the 
number  of bits 1 specifies the resolution of the  parameter A a  , that  is, 

A a  = a,, - a m i n  

2'-1 . 

The  particular  MPF SRP model  parameters  selected  include  a  backshell  model  that can change  with  time as 
shadowing  characteristics  change.  Three  consecutive  transitions are allowed,  and  each can be active  for  a 
span  of time  from 0 to 64 days.  Since  these  add  sequentially,  it is possible  for  the  backshell  models to last 
for  a  total  period  that is anywhere  from 0 days long  up  to  192  days  (1  19.5  days  longer  than  the  span  of 
tracking data). It is up to the GA to determine  which  combination  of  time spans best  models the  backshell. 
A  novel  feature of the  design  space  centers on a  concept  pioneered by Crossley  [9]  that  associates  strings of 
genes  together  according  to  a  selected  design  feature.  Crossley  called this gene  association sex-limited 
inheritunce. Specifically,  the  backshell  model  type  can  be  either  a  flat  plate  or  a  cylinder,  and,  depending 
on the  particular  selection  that is made,  the  subsequent  two  variables are an angle  and  area  for  the  flat  plate, 
or a  radius  and  height  for  the  cylinder.  Note  that 0 is the  angle between the  flat  plate  outward  normal 
vector  and  the  spacecraft Z axis  (nominally  Earth  pointed),  with  the  vector  lying  in  the YZ spacecraft  plane 
(nominally  transverse  to  the  orbit  plane). In the  current  application  it  is  possible  to  formulate  a  selection 
between  multiple  type  dependencies by allowing  the  type  variable  to  have  more than a 1 bit  representation 
(even  though  only  two  types are specifically  investigated), as such,  the  term type-limited  inheritunce will  be 
used  rather  than  sex-limited  inheritance.  Finally,  the  a priori uncertainty  associated  with  the  area  scale 
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Table 3: MPF SRP chromosome  structure. 

factors  for  all  the  components are selected as design  parameters  (the  scale  factors  for  each  component are 
nominally  included  in  the  filter  state  vector).  All  other  filter  parameters  remain  fixed  and are the  same as 
the  filter  parameters used during  operations.  The  selected  design  variables  and  number of genes  associated 
with  each  variable  yield  a  chromosome  with  a  length  of 57 bits (genes). 

A key  consideration  with  formulating  the  structure  of  the  chromosome is in  ordering  these  genes.  The 
strength of a GA's search  versus  a  pure  stochastic  search lies with its  ability  to  retain  knowledge of 
desirable  features from one  generation  to  the  next. This is the  concept  of  schema  processing. A schema 
can  be  defined as a  gene  pattern  describing  a  common  feature  in  a  subset  of  the  population.  For  instance,  if 
a  backshell 2 model  of a  flat  plate with  an angle of 45" consistently  produces  better  fitness  values  over 
other  models,  then  a  gene  pattern  representing  this  selection can become  prevalent  in  a  number of the 
population  via  the GA selection  operation. In this fashion,  the GA retains  desirable  features  from  one 
generation  to  the  next..  It  has  been shown analytically,  using  the  fundamental  theorem of genetic 
algorithms [lo], that  schema  of  low  order  and  length  (i.e., the  number of distinguishing  genes  and  the 
distance between the  last  and  first  gene,  respectively)  assist in the  convergence  process.  Hence,  the GA 
designer  should  take  care  to  put  like  features  near  each  other  in  the  construction of the  chromosome  string. 
For  example,  all  genes  associated  with  a  single  backshell  model  should  be  next to each  other.  With this in 
mind, the  chromosome  structure  selected  for this study  takes  the  form  indicated  in  Table 3. 

A final  aspect  regarding  the  construction of the chromosome is in the choice of encoding. A simple 
binary  encoding is a  classic  choice,  however  this  method  presents  a  difficulty  in  the  form of  Hamming 
Cliffs [lo]. Hamming  Cliffs are associated  with  the  number  of  bit flips  required when incrementing  an 
integer  by  one. As an  example,  consider  the  binary  representation of 3, which is 01 1, and 4, which is 100. 
Incrementing  the  integer  value by one  changes all three of the bit  positions.  Thus  the GA, which  operates 
on individual  bits  in its crossover  operation, will have  difficulty in incrementing  this  example  from 3 to 4 
since three bit  operations  are  required.  The  result is a Hamming  Cliff.  Furthermore,  if  the  fitness  levels 
change  significantly  between  these  two  representations,  the GA will  have  difficulty  in  finding this change. 
To circumvent this a  Gray  code is selected  for  encoding  the  binary  strings.  The  salient  feature of a  Gray 
code is consecutive  integers  result  in  binary  representations  that  change  only  one  bit. In the prior example, 
the  Gray  code  representation of 3 is 010  and  for 4 it is 110,  only the left  most  bit has  changed. Details of 
the  Gray  code  algorithm  can be found on Weisstein's web page [ 111. 

THE GENETIC ALGORITHM OPERATORS 
Three  main  operators  form  the  basis  for  a GA algorithm  search - selection,  crossover,  and  mutation. A 

binary,  single  branch  tournament  approach is used to  select  the  parents  in  the  current  population  for  mating. 
Unlike  other  popular  methods,  such as roulette wheel  selection,  this  approach  is  a  competitive  strategy  that 
is amenable to minimization  problems  without  fitness  scaling.  It  is also easily  adaptable  to  multiobjective 
design  via  adding  another  branch  to  the  tournament  scheme.  For  instance,  the  two  branch  scheme  can  be 
easily  formulated  to  minimize  an  objective  based on 2 Way  Doppler data and another  objective  function 
based  on  range data (a  topic  under  investigation  in  the  continuation of this research).  Parent  selection 
proceeds as follows: 

1.  Place  the  entire  population  into  a pot, 
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2. Select  two  individuals at random  and  without  replacement, 

3. Compare  their  fitness  values, the individual  with  the  lower  fitness  is  placed  into  a parent pool, 

4. Repeat this process  until  the  pot  is  empty - the parent  pool is now  half  full, 

5. The pot is  refilled with the  entire  current  population. 

6. Repeat  steps  2  through 4. This fills  the  parent pool  completely  and  readies  the  GA  for  the 
crossover  operation. 

Note that  this  sequence of operations  guarantees  that  the  overall  fitness of the  parent  pool is better  than  the 
population. 

After  selection,  individuals  in  the  parent  pool are randomly  selected  without  replacement,  two  at  a 
time,  and mated in the crossover  operation  to  form  two  children.  Again  there  are  numerous  crossover 
approaches to choose  from,  in  the  present  study,  results  generated  using  single  point  crossover  and  uniform 
crossover are examined. In single  point  crossover, the chromosomes  of two  parents  are  selected  and if a 
random  number  draw  between (0,l) is less  a  threshold  value  (set to 0.9 in this study)  they  exchange  genetic 
material. If there is no exchange  the  parents  become  children  (they are clones). If there is an  exchange,  it 
takes  place  at  a  random  location  along  the  parents  chromosome  string.  The  genetic  material  before this 
location  remains  unchanged,  and  the  genetic  material  after  it is switched.  The  result is two  children  that 
inherit  genetic  material  fiom  both  parents.  For  example, if the  random  location  along  the  chromosome is 
23, then  the  parents’  genes  fiom  1  to 23 remain  fixed,  and  the  genes  fiom 24 to 57  are  swapped.  The  other 
strategy  that  is  investigated is uniform  crossover. In this approach  each  child  string  receives  each  gene 
from  the  first  parent or the second  with a 50% chance.  For  example, if a  fair  coin  toss  came  up  “heads”  the 
first  child  would  inherit its first  gene  from  the  first  parent  and  the  second  child  would  inherit its first  gene 
from  the  second  parent. If the  toss  were  “tails”, the  first  child would  inherit its first  gene  from  the  second 
parent  and  the  second  child  would  inherit its first  gene  from the first  parent.  Each  gene  location is 
examined  for  crossover  in this manner,  and  the  resulting  children will inherit  traits of both  parents  through 
the  binary  chromosomes.  Empirical  evidence  suggests  that  single  point  crossover is better at retaining 
long-length  and  long  order  schema  than  uniform  crossover  (exploiting  information known to be  good). 
However,  uniform  crossover is better  at  exploring  the  design  space  to  find  more  fit  designs. [ 121 

The  mutation  operation  occurs  with  a  very  low  probability  according  to  the  following  rule, 

where NpoP is  the  size of the  population  and N G E ~  is the  number of genes  in  a  chromosome. In the  present 
study N G E ~  is equal to 57  and NPop is set  to  172  (which is - 3x&Em) ,  thus  the  probability of mutation 
becomes  0.01  17.  After the  child  strings  have  been  formed,  a  mutation  may  occur  that  will  change  a  gene  to 
its binary  opposite.  Each  gene of a  child’s  chromosome is subject  to  mutation.  Mutation  ensures  diversity 
because it can  allow  for  a  new  trait  to be introduced  that  was  not  present  in  a  child’s  parents.  It  also  assists 
the  GA  from  converging  prematurely  into  a  local  minimum.  Finally,  the  GA  utilizes  elitism.  Since  a  best 
individual  (as  determined by the selection  operation)  can be mutated,  it is possible  to  lose  desirable  genetic 
information. To prevent this fiom  happening,  the  best  individual in a  generation is retained, an4 after 
mutation,  put  back into  the  population by replacing  a  randomly  selected  individual.  The  outcome of the 
selection,  crossover,  and  mutation  operations is a new  population  ready  for  the  next  generation  of  GA 
processing. 

Now,  with the  selection  operator  favoring  good  individuals,  the  crossover  operator  combining  features 
of  good  individuals,  and  the  mutation  operator  ensuring  diversity the GA  population  moves  towards  the 
globally  optimal  design.  The  GA  search  continues  until  convergence,  where  this  is  defined  in  the  present 
context as the  fitness  function  difference  does  not  change by a  defined  percentage  for  a  selected  number of 
generation  (1/1000%  for  10  generations  in  the  current  implementation). 
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Table 4: Comparison of best  solutions. 

RESULTS 
The  results of the genetic  algorithm  search  over  the  design  space  identified  in  Table  2  using  the 

chromosome  structure  defined  in  Table  3,  and  the  operators  discussed  in  the prior section  produce  an SRP 
model  that is better  than  the  MPF  team  result  in  several  contexts.  Two  cases are considered,  a GA run 
using  uniform  crossover  and  a  second  using  single  point  crossover. In each  case,  convergence  was 
achieved in relatively  few  generations, 12  with  10  additional  generations  for  verification  of  convergence. 
Table  4  lists  the  solution  details,  and  includes  the  MPF  teams  result  for  comparison.  The  associated  filter 
residuals  (and  associated  fitness  values)  resulting  from  these  models  are shown in  Figure 5. Finally,  the 
convergence  characteristics of these  two GA runs are  illustrated in Figure 6. There are a number  of 
features of  both GA solutions  that  are  immediately  apparent.  The  backshell  configurations  selected  by the 
GAS are consistently  cylinders, as opposed  to  a  flat  plate  for  one of the MPF navigation  team  selections. 
Consider  that  the  backshell,  in  actuality,  has  a  conical shape, thus  a  cylinder  would  seem to be a  better 
representation of its geometry as opposed to  a  flat  plate. This is indeed  the  case as determined by the GA. 
Furthermore,  the  later  backshell  models (2 & 3) are larger  than  the  first  backshell  component.  Recall,  from 
Figure  3  that  during  the  later  part of cruise  the  Sun-spacecraft-Earth  angle  grows,  and,  hence,  the  backshell 
is shadowed  less  by the solar  array.  Given this, it is reasonable to expect  a  cylinder  with  more  surface area 
would  lead to a  better  representation of the  backshell  later in the  run,  again,  the GA arrives  at this 
conclusion.  Therefore,  these GA solutions  appear  more  intuitive  from  physical  point of  view. This 
conclusion is also supported  quantitatively, the fitness  values  for  both GA solutions (funi = 0.1387 
= 0.1389)  are  nearly 6% better  than  the  MPF  team  result  of fmF = 0.1470.  However,  perhaps  more 
significant, is both GA solutions  produce  predicted  residuals  that  are  not  divergent  (i.e.,  more  stable) as 
compared to their  MPF  counterpart. A stable  result is a  strong  indicator  that  the  underlying  models are 
more  representative of reality,  because the predicted  measurements  based on these  models  continue  to 
match  the  real  tracking data quite  well  for  several  weeks.  Given  the  apparent  divergence  of the MPF  team's 
result in  Figure  4,  it is not  surprising  that  later  in  the  mission this model  had to be adjusted  to be less 
sensitive  to  specific data. Finally,  examination of Figure 6 shows  that  the  zeroth  generation  (which is 
populated  randomly)  immediately  produces an individual  that  is  better  fit  than  the  MPF  solution.  The  next 
12 generations  iterate on this result  to  fine-tune  the  solution.  These  fortuitous  zeroth  generation  results 
stem,  in  part,  by  the  selection  of  a  fairly  narrow  design  space.  However,  the  design  space  selection  was 
guided  by realizing  that  any  feasible  solution  should start in a  region  (of all  possible  designs)  near  a 
physically  reasonable  conception of the spacecraft  components.  Thus,  it is not  surprising to find  good 
individuals  quickly.  The  strength of the GA in this search  was  in  fine  tuning  the  selected SRP, with the 
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Figure 5: Residuals  resulting  from  best GA model  selected  using  different  crossover  strategies 

crucial  result  that  the  final  solution  produces  a  more  stable  predicted  residual  sequence  than  the  models 
mived at  using  a  manpower  intensive, ad hoc  search. 

CONCLUSIONS 
Adaptive  navigation  using  genetic  algorithms  offers  a  promising  solution  to  the  problem of optimal 

filter  model  selection.  The  results of this  study  have  illustrated  that  a  systematic  search  through  a 
predefined  design  space is capable of finding  better  filter  models  than the traditional  manpower  intensive 
approach.  The GA is capable of making  a  myriad of design  decisions  that  would  be  prohibitive  if  those 
decisions  were  made  by  a  human.  The  result is a  powerful  tool  to  assist  an  analyst  in  determining  an 
optimal  filter  model. O f  course,  convergence of the  GA  is  predicated  on  a  thoughtful  construction of the 
GA  design  space,  chromosome  structure,  and  selection  of  the GA operators  and  their  associated  parameters. 
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Figure  6: Convergence of  GA runs  to  best  solutions 

This  aspect of the GA based adaptive  approach is well  served  by a  careful  analysis of the physical 
characteristics of the  problem  to be solved. 
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